Home Print this page Email this page Small font size Default font size Increase font size   Users Online: 469
Home About us Editorial board Search Browse articles Submit article Instructions Subscribe Contacts Login 


 
 Table of Contents  
ORIGINAL ARTICLE
Year : 2019  |  Volume : 8  |  Issue : 1  |  Page : 5

45S5 Bioglass paste is capable of protecting the enamel surrounding orthodontic brackets against erosive challenge


1 Department of Orthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Orthodontics Alexandria University, Alexandria, Egypt
2 Department of Operative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia; Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Egypt
3 Department of Dental Health, Jeddah Medical Center, Ministry of Defense, Jeddah, Saudi Arabia
4 Department of Dental Health, Jeddah Speciality Dental Center, Ministry of Health, Jeddah, Saudi Arabia
5 Faculty of Dentistry, Batterjee Medical Collage, Jeddah, Saudi Arabia
6 Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
7 Department of Orthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia

Date of Web Publication20-Feb-2019

Correspondence Address:
Dr. Ahmed Samir Bakry
Department of Operative Dentistry, Faculty of Dentistry, King Abdulaziz University, Room 33 Building 14, Jeddah, P.O. Box: 80200, Zip Code: 21589

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jos.JOS_93_18

Rights and Permissions
  Abstract 


OBJECTIVES: This study aimed at evaluating the effect of using a 45S5 bioglass paste and a topical fluoride as protective agents against acidic erosion (resembling acidic beverage softdrinks intake) for enamel surrounding orthodontic brackets.
MATERIALS AND METHODS: Sample of 21 freshly extracted sound incisor and premolar teeth was randomly divided into three equal groups: a bioglass group (Bioglass) (NovaMin, 5-mm average particle, NovaMin Technology), a Fluoride group (Fluoride) (Gelato APF Gel, Keystone Industries), and a control group (Control). Orthodontic brackets were bonded to the utilized teeth usingMIP (Moisture Insensitive Primer) and Transbond PLUS color change adhesive. All specimens were challenged by 1% citric acid for 18 min. The top enamel surfaces next to the orthodontic brackets were examined by SEM-EDS. Wilcoxon Signed-Rank test was used to compare the area covered by the 45S5 bioglass paste before/after erosion P < 0.05.
RESULTS: 45S5 bioglass paste application resulted in the formation of an interaction layer that significantly resisted erosion challenge P < 0.05. The fluoride and control specimens showed signs of erosion of the enamel next to the orthodontic brackets (P < 0.05).
CONCLUSION: 45S5 bioglass paste can efficiently protect the enamel surfaces next to orthodontic brackets for acidic erosion challenges.

Keywords: 45S5 Bioglass, erosion, orthodontic brackets


How to cite this article:
Abbassy MA, Bakry AS, Alshehri NI, Alghamdi TM, Rafiq SA, Aljeddawi DH, Nujaim DS, Hassan AH. 45S5 Bioglass paste is capable of protecting the enamel surrounding orthodontic brackets against erosive challenge. J Orthodont Sci 2019;8:5

How to cite this URL:
Abbassy MA, Bakry AS, Alshehri NI, Alghamdi TM, Rafiq SA, Aljeddawi DH, Nujaim DS, Hassan AH. 45S5 Bioglass paste is capable of protecting the enamel surrounding orthodontic brackets against erosive challenge. J Orthodont Sci [serial online] 2019 [cited 2019 May 23];8:5. Available from: http://www.jorthodsci.org/text.asp?2019/8/1/5/252620




  Introduction Top


Demineralization of enamel around orthodontic brackets is a clinical problem faced by many orthodontists worldwide[1],[2] because surface irregularities of the bands, brackets, and other attachmentscan act as plaque stagnation areas, causing the increaseof the cariogenic streptococcus bacterial in these orthodontic patients' oral cavities.[1],[3] Moreover, the spread of improper diet habits and specially the increased consumption of erosive drinks in hot regions of the world[4] may complicate the dental problems of orthodontic patients through the development of erosive lesions.[4] Prevention of acidic erosive lesions by applying topical fluoride on the enamel ofhigh caries risk patients can help in decreasing the incidence of enamel demineralization;[5],[6] however, topical fluoride application to orthodontic patients treated with fixed orthodontic appliances may affect the surface properties of the brackets and orthodontic wires used for treatment.[7] Moreover, previous research reported the possibility of using other materials for protecting enamel against various acidic attacks such as bonding orthodontic brackets with fluoride releasing bonding agents,[8] the use of nano particles to modify the cariogenic oral flora in orthodontic patients,[9] the use of caseinphosphopeptides-amorphous calcium phosphate containing agents,[10] the use of antiseptics as chlorhexidine to decrease streptococcus levels in high caries risk orthodontic patients,[11] probiotics, polyols, sealants, laser, tooth bleaching agents, resin infiltration, and microabrasion.[9],[12]

Another strategy for preventing the development of acidic erosive lesions involved the use of orthodontic sealant prior to bonding orthodontic bracket to enamel. It was suggested that orthodontic sealantscan protect the prone areas adjacent to the orthodontic bracket from acidic attacks either from bacterial or non-bacterial origin.[13]

45S5 bioglass is a bioactive glass that was introduced in the 1960s and proved its efficiency in treating commuted fractures and increased the success rate of metallic artificial joints implanted in humans through itscapability in producing a layer of hydroxyapatite on its surface that bonded to the surrounding human soft and hard tissues.[14] 45S5 bioactive glass was introduced in dentistry as a ridge augmentation material and as a coating material for dental implants;[14] however, its application for enamel and dentin lesions treatment was recently introduced;[15] it was suggested that the 45S5 bioglasscan form a layer rich in calcium and phosphate that had the ability to remineralize the enamel and dentin lesions[16],[17] and showed good biocompatibility to pulp cells.[18] The formed layer was resistant to the brushing abrasion in oral cavity. Moreover, it was able to restore early erosive enamel lesions with complete loss of hydroxyapatite crystals content.[19]

In this study, the efficacy of using a bioglass paste as a protective enamel sealant against an erosive challenge prior to bonding of orthodontic brackets was tested.

The null hypothesis adopted in this study is that the bioglass paste will have no effect in protecting the enamel surface against an erosive challenge.


  Materials and Methods Top


The experimental procedures and the materials used are summarized in [Figure 1] and [Table 1]. About 21 freshly extracted sound incisor and premolar teeth were randomly divided into three equal groups: a bioglass group (Bioglass), a fluoride group (Fluoride), and a control group (Control) that received no remineralization treatment before or after bracket bonding. All specimens were covered with a nail varnish except the facial surface which was left uncovered.
Figure 1: Summary of the experimental procedures

Click here to view
Table 1: Materials used in this study

Click here to view


Bioglass application

Bioglass powder (NovaMin, 5 mm average particle, NovaMin Technology), which contains 24.5 wt% Na2O, 24.4 wt% CaO, 6 wt% P2O5, and 45 wt% SiO2, was mixed by a spatula with diluted aqueous solution of phosphoric acid as described previously on a glass slab for 1 min to form a paste with pH 2.[16] The prepared paste was applied with a microbrush on the facial surfaces of teeth of the bioglass group. Then, a thin coat of bonding agent (PALFIQUE Bond, Tokuyama Dental, Japan) was applied and light-cured for 10 seconds. Specimens were preserved in distilled water for 24 h. After that, the excess bioglass material was removed with a stream of air-water spray.

Brackets bonding

Etching of enamel surfaces with 37% phosphoric acid was performed for 15 s then rinsed with air–water stream, followed by thorough drying.A liberal coat of Transbond™ MIP Moisture Insensitive Primer (3M Unitek) was applied to etched surfaces then gently dried for 5 s.A small amount of Transbond PLUS color change adhesive (3M Unitek) was dispensed onto the base of orthodontic brackets (Unitek™ Gemini Metal Brackets, 3M Unitek) which were placed on teeth surfaces and adjusted to final position. Brackets were then pressed and excess adhesive was removed, then light cured for 5 smesially, and 5 s distally.

Fluoride application

Specimens of the Fluoride group had the enamel surface next to the brackets treated with 1.23% acidulated phosphate fluoride gel (Gelato APF Gel, Keystone Industries) for 5 min, then wiped withmoistened cotton pellet.

Erosive challenge

Specimens of the three groups were challenged by a buffered demineralizing solution, which is composed of 1% citric acid for 18 min[20] that was continuously stirred by a magnetic stirrer.

SEM/EDS (scanning Electron microscope/energy-dispersive x-ray spectroscopy) top surface examination

Specimens from ach group had their top enamel eroded surface examined by the SEM/EDS (JCM-6000 NeoScope, Jeol, Akishima, Japan). All specimens were gradually dehydrated in an ascending ethanol series (50%–100%), gold coated, and the specimens' surface chemical characterization and morphological features were examined by SEM/EDS. The percentage of coverage by the 45S5 bioglass Interaction layer to the enamel surfacewas compared using the Wilcoxon Signed-Rank test[16] before/after erosion (P < 0.05).


  Results Top


FE-SEM top surface examination

The untreated enamel surface revealed a smooth surface [Figure 2]a and [Figure 2]b. The Control group and the Fluoride group[Figure 2]c, [Figure 2]d, [Figure 2]e, [Figure 2]f revealed rough enamel surface in which the borders of the enamel prisms were evident due to the erosion challenge. Bioglass-treated specimens showed the coverage of the whole surface by crystalline structures [Figure 2]g and [Figure 2]h after exposure to the acid challenge.
Figure 2: SEM observation for the top view of the specimens. Low (a) and high magnification;(b) top surface view for Control group (before erosion challenge) showing smooth enamel surface next to the orthodontic bracket. Low (c) and high (d) magnification forControl group (after erosion challenge) showing rough enamel surface with obvious boundaries of the enamel prisms. Low (e) and high (f) magnification for Fluoride group (after erosion challenge) showing rough enamel surface with obvious boundaries of the enamel prisms. Low (g) and high (h) magnification for Bioglass group (after erosion challenge) showing crystalline structures covering the areas next to the orthodontic bracket

Click here to view


Chemical characterization by EDS analysis for all groups are shown in [Table 2]. The Control and Fluoride groups showed similar content of phosphorus and calcium. Bioglass group specimens showed that the newly formed layer was rich in calcium and phosphate with the presence of trace amounts of silica. Wilcoxon Signed-Rank test showed that the percentage of coverage of the formed interaction layer onto the enamel surface was not significantly changed after the erosion challenge P < 0.05.
Table 2: Weight percentage for each element detected by EDS

Click here to view



  Discussion Top


The null hypothesis adopted in this study was rejected. The Interaction layer formed after the bioglass paste application. Bioglass paste protected the enamel surface (next to orthodontic brackets) against an erosive challenge.

The introduction of orthodontic sealants and their application on the enamel surfaces under and surrounding the orthodontic brackets showed improved protection for teeth bearing orthodontic appliances against acidic attacks.[13] In this study, a bioglass paste was applied on enamel surfaces of teeth prior to bonding of orthodontic brackets in an attempt to use it as an orthodontic sealant. Previous study showed that the bond strength of orthodontic brackets to enamel treated with the same bioglass paste is within the clinically acceptable range;[21] thus, it may be expected that premature debonding of orthodontic brackets is less likely to occur if bioglass is applied prior to bonding orthodontic bracket.

Erosive lesions are characterized by complete loss of enamel tissues and a concomitant subsurface demineralization.[22] Topical fluoride application involves the release of large amounts of fluoride ions to the targeted enamel surfaces and modify it to fluorapatite crystals that was recorded to be of high resistance to dissolution in acids.[23] This study showed that the fluoride topical application for 5 min as recommended by manufacturer did not protect the enamel surface from the erosion challenge, which may be attributed to less capability of the acidic NaF 1% to adhere to the enamel surface when compared with other types of fluoride remineralizing agents.[24]

Specimens which had 45S5 bioglass paste applied on them in this study showed resistance to the development of significant enamel erosive lesion which may be attributed to the formation of an interaction layer[16],[18],[19],[25],[26] on top of enamel surface after the application of the 45S5 bioglass paste. Previous research showed that the aforementioned layer was resistant to abrasion[16] suggesting the potential of forming a chemical bond between the enamel and the interaction layer.[16] This study provided an additional advantage of the interaction layer as an acid resistant layer. The observed action of the agents utilized in this experiment is illustrated in [Figure 3]. The suggested mechanism of action for the 45S5 bioglass is illustrated in [Figure 4] and can be summarized as follows: The 45S5 upon being mixed with phosphoric acid aqueous solution will rapidly release high amounts of calcium ions in addition to sodium ions, in the same time the hydroxide ions from the aqueous part of the solution will attack the silica network of the bioglass causing its breakdown and formation of silanol compounds.[17],[27] The silanol compounds are highly soluble in water,[27] and thus, it is expected to be completely washed from the formed interaction layer upon washing it with strong water spray after 24 h as was demonstrated previously.[16],[18],[19],[25],[26] The calcium ions released from the bioglass will combine with the phosphate ions released from the phosphoric acid solution to form calcium phosphate compounds that deposit on the enamel surface.[16],[18],[19],[25],[26]
Figure 3: Suggested mechanism of action for the utilized materials. (a) Control group suffered erosion of the enamel surface next to the orthodontic bracket.(b) Fluoride was not able to protect the enamel surface next to the orthodontic bracket from erosion in the Fluoride group.(c) The bioglass paste formed a protective interaction layer that protected the enamel surface from erosion

Click here to view
Figure 4: Mechanism of action for the 45S5 paste. (a) The 45S5 will rapidly release high amounts of calcium ions in addition to sodium ions, in the same time the hydroxide ions from the aqueous part of the solution will attack the silica network of the bioglass causing its breakdown and formation of silanol compound. (b) The silanol compounds will be formed and in the same time the calcium ions released from the bioglass will combine with the phosphate ions released from the phosphoric acid solution to form calcium phosphate compounds that deposit on the enamel surface

Click here to view


Previous study showed the biocompatibility of using the current technique of 45S5 bioglass application in direct contact with pulp cells, which may suggest its safe application on enamel surfaces.[18] The application of the white bioglass paste resembles the application of temporary restorative material; thus, it is not expected to cause any esthetic problem during its application. Moreover, previous research showed that the interaction layer starts with the formation of microscopic layer of brushite crystals that will transform to hydroxyapatite within 14 days of storage in artificial saliva without being exposed to any acidic challenge.[19]

It may be speculated that the application of the 45S5 bioglass with the current method prior to bonding of orthodontic brackets and keeping proper oral hygiene measures for orthodontic patients may be a good strategy capable of protecting the enamel surface from acidic attack.


  Conclusion Top


45S5 Bioglass paste can form an interaction layer capable of protecting the enamel surface from erosive solution, suggesting its possible use as an orthodontic enamel sealer prior to bonding orthodontic brackets.

Financial support and sponsorship

The authors, gratefully acknowledge the technical, financial and logistic support of King Fahd Medical Research center at King Abdulaziz University, Jeddah, moreover, the authors acknowledge the Saudi Dental Research group, Dr. Aseel Al Amoudi, and Dr. Muhannad Shuman for their logistic support.

Conflicts of interest

There are no conflicts of interest.



 
  References Top

1.
Mizrahi E. Enamel demineralization following orthodontic treatment. Am J Orthod 1982;82:62-7.  Back to cited text no. 1
    
2.
Mitchell L. Decalcification during orthodontic treatment with fixed appliances--An overview. Br J Orthod 1992;19:199-205.  Back to cited text no. 2
    
3.
Rosenbloom RG, Tinanoff N. Salivary Streptococcus mutans levels in patients before, during, and after orthodontic treatment. Am J Orthod Dentofacial Orthop 1991;100:35-7.  Back to cited text no. 3
    
4.
Scully M, Morley B, Niven P, Crawford D, Pratt IS, Wakefield M. Factors associated with high consumption of soft drinks among Australian secondary-school students. Public Health Nutr 2017;20:2340-8.  Back to cited text no. 4
    
5.
Alexander SA, Ripa LW. Effects of self-applied topical fluoride preparations in orthodontic patients. Angle Orthod 2000;70:424-30.  Back to cited text no. 5
    
6.
Benson PE, Shah AA, Millett DT, Dyer F, Parkin N, Vine RS. Fluorides, orthodontics and demineralization: A systematic review. J Orthod 2005;32:102-14.  Back to cited text no. 6
    
7.
Abbassy MA. Fluoride influences nickel-titanium orthodontic wires' surface texture and friction resistance. J Orthod Sci 2016;5:121-6.  Back to cited text no. 7
    
8.
Cohen WJ, Wiltshire WA, Dawes C, Lavelle CL. Long-term in vitro fluoride release and rerelease from orthodontic bonding materials containing fluoride. Am J Orthod Dentofacial Orthop 2003;124:571-6.  Back to cited text no. 8
    
9.
Borzabadi-Farahani A, Borzabadi E, Lynch E. Nanoparticles in orthodontics, a review of antimicrobial and anti-caries applications. Acta Odontol Scand 2014;72:413-7.  Back to cited text no. 9
    
10.
Bakry AS, Abbassy MA. Increasing the efficiency of CPP-ACP to remineralize enamel white spot lesions. J Dent 2018;76:52-7.  Back to cited text no. 10
    
11.
Al-Bazi SM, Abbassy MA, Bakry AS, Merdad LA, Hassan AH. Effects of chlorhexidine (gel) application on bacterial levels and orthodontic brackets during orthodontic treatment. J Oral Sci 2016;58:35-42.  Back to cited text no. 11
    
12.
Khoroushi M, Kachuie M. Prevention and Treatment of white spot lesions in orthodontic patients. Contemp Clin Dent 2017;8:11-9.  Back to cited text no. 12
[PUBMED]  [Full text]  
13.
Hu W, Featherstone JD. Prevention of enamel demineralization: An in-vitro study using light-cured filled sealant. Am J Orthod Dentofacial Orthop 2005;128:592-600; quiz 70.  Back to cited text no. 13
    
14.
Hench LL. The story of bioglass. J Mater Sci Mater Med 2006;17:967-78.  Back to cited text no. 14
    
15.
Bakry AS, Sadr A, Takahashi H, Otsuki M, Tagami J. Analysis of Er:YAG lased dentin using attenuated total reflectance Fourier transform infrared and X-ray diffraction techniques. Dent Mater J 2007;26:422-8.  Back to cited text no. 15
    
16.
Bakry AS, Takahashi H, Otsuki M, Tagami J. Evaluation of new treatment for incipient enamel demineralization using 45S5 bioglass. Dent Mater 2014;30:314-20.  Back to cited text no. 16
    
17.
Bakry AS, Takahashi H, Otsuki M, Sadr A, Yamashita K, Tagami J. CO2 laser improves 45S5 bioglass interaction with dentin. J Dent Res 2011;90:246-50.  Back to cited text no. 17
    
18.
Bakry AS, Tamura Y, Otsuki M, Kasugai S, Ohya K, Tagami J. Cytotoxicity of 45S5 bioglass paste used for dentine hypersensitivity treatment. J Dent 2011;39:599-603.  Back to cited text no. 18
    
19.
Bakry AS, Takahashi H, Otsuki M, Tagami J. The durability of phosphoric acid promoted bioglass-dentin interaction layer. Dent Mater 2013;29:357-64.  Back to cited text no. 19
    
20.
Magalhaes AC, Moraes SM, Rios D, Wiegand A, Buzalaf MA. The erosive potential of 1% citric acid supplemented by different minerals: An in vitro study. Oral Health Prev Dent 2010;8:41-5.  Back to cited text no. 20
    
21.
Almusally S, Abbassy MA, Linjawi A, Bakry AS, Hassan AH. Effects of Bioglass and Opalseal on Bonding of Orthodontic Brackets. London: International Association for Dental Research Congress; 2018.  Back to cited text no. 21
    
22.
Amaechi BT, Higham SM. In vitro remineralisation of eroded enamel lesions by saliva. J Dent 2001;29:371-6.  Back to cited text no. 22
    
23.
Sudjalim TR, Woods MG, Manton DJ, Reynolds EC. Prevention of demineralization around orthodontic brackets in vitro. Am J Orthod Dentofacial Orthop 2007;131:705 e1-9.  Back to cited text no. 23
    
24.
Wiegand A, Bichsel D, Magalhaes AC, Becker K, Attin T. Effect of sodium, amine and stannous fluoride at the same concentration and different pH on in vitro erosion. J Dent 2009;37:591-5.  Back to cited text no. 24
    
25.
Bakhsh TA, Bakry AS, Mandurah MM, Abbassy MA, Novel evaluation and treatment techniques for white spot lesions. An in vitro study. Orthodontics & craniofacial research 20(3), 170-6.  Back to cited text no. 25
    
26.
Bakry AS, Marghalani HY, Amin OA, Tagami J. The effect of a bioglass paste on enamel exposed to erosive challenge. J Dent. 2014;42:1458-63.  Back to cited text no. 26
    
27.
Bakry AS, Abbassy MA, Alharkan HF, Basuhail S, Al-Ghamdi K, Hill R, et al. A novel fluoride containing bioactive glass paste is capable of re-mineralizing early caries lesions. Materials (Basel) 2018;11. pii: E1636.  Back to cited text no. 27
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4]
 
 
    Tables

  [Table 1], [Table 2]



 

Top
 
 
  Search
 
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

 
  In this article
Abstract
Introduction
Materials and Me...
Results
Discussion
Conclusion
References
Article Figures
Article Tables

 Article Access Statistics
    Viewed669    
    Printed55    
    Emailed0    
    PDF Downloaded155    
    Comments [Add]    

Recommend this journal