Journal of Orthodontic Science

ORIGINAL ARTICLE
Year
: 2015  |  Volume : 4  |  Issue : 2  |  Page : 42--46

In vitro evaluation of frictional forces of two ceramic orthodontic brackets versus a stainless steel bracket in combination with two types of archwires


Valiollah Arash1, Mahmoud Rabiee2, Vahid Rakhshan3, Sara Khorasani1, Farhad Sobouti4 
1 Dental Material Research Center, School of Dentistry, Babol University of Medical Sciences, Babol, Iran
2 Department of Mechanics, Babol University of Noushirvani, Babol, Iran
3 Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences; Department of Dental Anatomy and Morphology, Islamic Azad University, Tehran, Iran
4 Department of Orthodontics, School of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran

Correspondence Address:
Dr. Farhad Sobouti
Orthodontic Clinic, Touba Medical Center, Khazar Square, Sari
Iran

Purpose: The aim of this study was to compare frictional forces between monocrystalline alumina (MA), polycrystalline alumina (PA), and stainless steel (SS) brackets with two SS wires: Rectangular and round. Materials and Methods: In this in vitro study, 60 0.022DQ brackets [20 PA (0° torque, Forestadent, Germany) and 20 MA (0° torque, Ormco, California, USA)] brackets plus 20 SS brackets (0° torque, Foretadent, Germany) and 60 SS archwires (30 rectangular 0.019DQ ×0.025DQ archwires and 30 round 0.018DQ archwires, Ortho Technology, USA) were used in subgroups of 10 from the combination of all brackets and all archwires. A universal testing machine (Instron, Model STM 250, Germany) was used to investigate the static frictional resistance. The angulation between the bracket and wire was 0°, and the wires were pulled through the slots at a crosshead speed of 10 mm/min. Two-way and one-way analyses of variance (ANOVA) and Tukey tests were used to analyze the data. Results: Mean (SD) static frictional force for each group was as follows: MA + round: 3.47 (0.38); MA + rectangular: 4.05 (0.47); PA + round: 4.14 (0.37); PA + rectangular: 4.45 (0.65); SS + round: 3.28 (0.22); and SS + rectangular: 4.22 (0.61). Significant effects of bracket types (P = 0.001) and archwire types (P = 0.000) on the friction force were detected using ANOVA. Tukey test indicated significant differences between PA brackets with both SS and MA brackets (P < 0.05), but not between SS and MA brackets. The two archwires as well had significantly different effects (Tukey P = 0.000). Conclusions: Based on the present in-vitro study, the PA brackets might create higher frictional forces compared to both SS and MA brackets. The rectangular 0.019DQ ×0.025DQ archwire might create greater forces than round 0.018DQ archwire.


How to cite this article:
Arash V, Rabiee M, Rakhshan V, Khorasani S, Sobouti F. In vitro evaluation of frictional forces of two ceramic orthodontic brackets versus a stainless steel bracket in combination with two types of archwires.J Orthodont Sci 2015;4:42-46


How to cite this URL:
Arash V, Rabiee M, Rakhshan V, Khorasani S, Sobouti F. In vitro evaluation of frictional forces of two ceramic orthodontic brackets versus a stainless steel bracket in combination with two types of archwires. J Orthodont Sci [serial online] 2015 [cited 2020 Sep 19 ];4:42-46
Available from: http://www.jorthodsci.org/article.asp?issn=2278-0203;year=2015;volume=4;issue=2;spage=42;epage=46;aulast=Arash;type=0