Close
  Indian J Med Microbiol
 

Figure 4: Mechanism of action for the 45S5 paste. (a) The 45S5 will rapidly release high amounts of calcium ions in addition to sodium ions, in the same time the hydroxide ions from the aqueous part of the solution will attack the silica network of the bioglass causing its breakdown and formation of silanol compound. (b) The silanol compounds will be formed and in the same time the calcium ions released from the bioglass will combine with the phosphate ions released from the phosphoric acid solution to form calcium phosphate compounds that deposit on the enamel surface

Figure 4: Mechanism of action for the 45S5 paste. (a) The 45S5 will rapidly release high amounts of calcium ions in addition to sodium ions, in the same time the hydroxide ions from the aqueous part of the solution will attack the silica network of the bioglass causing its breakdown and formation of silanol compound. (b) The silanol compounds will be formed and in the same time the calcium ions released from the bioglass will combine with the phosphate ions released from the phosphoric acid solution to form calcium phosphate compounds that deposit on the enamel surface