Home Print this page Email this page Small font size Default font size Increase font size   Users Online: 196
Home About us Editorial board Search Browse articles Submit article Instructions Subscribe Contacts Login 
Year : 2013  |  Volume : 2  |  Issue : 3  |  Page : 87-94

Recycling stainless steel orthodontic brackets with Er:YAG laser - An environmental scanning electron microscope and shear bond strength study

1 Department of Orthodontics, KVG Dental College and Hospital, Sullia, India
2 Department of Orthodontics, AJ Shetty Dental College and Hospital, Mangalore, Dakshin Kannada, Karnataka, India

Correspondence Address:
Prince K Chacko
Department of Orthodontics, KVG Dental College and Hospital, Sullia, Dakshin Kannada, Karnataka
Login to access the Email id

Source of Support: The study was conducted in the Department of Orthodontics, Sree Balaji Dental College and Hospital, Chennai, India with the help of Central Institute of Plastic Engineering and Technology (CIPET), Chennai, India and Technical University of Vienna, Austria. Shear Bond Strength study was done using Lloyd universal testing machine at CIPET. Environmental Scanning Electron Microscopic study of the samples was done at Technical University of Vienna, Conflict of Interest: None

DOI: 10.4103/2278-0203.119680

Rights and Permissions

Aim: To determine the efficiency of erbium: Yttrium aluminum garnet (Er:YAG) laser with Environmental Scanning Electron Microscope (ESEM) and shear bond strength analysis as a method of recycling stainless steel orthodontic brackets and compare with other methods of recycling. Materials and Methods: Eighty samples of extracted premolar teeth bonded to SS brackets were tested for rebonded shear bond strength after recycling by four methods and compared with a control group of 20 samples. These 80 samples were randomized into four groups which were recycled by four methods, namely, sandblasting, thermal method, adhesive grinding by tungsten carbide bur, and Er: YAG laser method. After recycling, ESEM and shear bond strength analysis were used to analyze the efficiency of the recycling methods Results: Er: YAG laser group was found to be having the greatest bond strength among the recycled brackets (8.33±2.51 followed by the sandblasting at 6.12±1.12 MPa, thermal and electropolishing at 4.44±0.95 MPa, and lastly the adhesive grinding method at 3.08±1.07 MPa. The shear bond strength of Er: YAG laser group was found to be having no statistically significant difference with that of the control group (P>0.05 and had statistical signifance with sandblasting, thermal and electropolishing and adhesive grinding groups at P>0.001. ESEM analysis showed complete removal of adhesive from the brackets recycled with Er: YAG laser which mimicked that of the control group. Conclusion: Er: YAG laser (2940 nm) was found to be the most efficient method for recycling, followed by the sandblasting, thermal, and the tungsten carbide methods, which had the least shear bond strength value and is not fit for clinical usage.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded583    
    Comments [Add]    
    Cited by others 5    

Recommend this journal