Home Print this page Email this page Small font size Default font size Increase font size   Users Online: 1419
Home About us Editorial board Search Browse articles Submit article Instructions Subscribe Contacts Login 
Year : 2015  |  Volume : 4  |  Issue : 4  |  Page : 102-107

Covering of fiber-reinforced composite bars by adhesive materials, is it necessary to improve the bond strength of lingual retainers?

1 Dental Research Center, Department of Orthodontics, Dental Research Center of Mashhad University of Medical Sciences, School of Dentistry, Mashhad, Iran
2 Department of Orthodontics, Hormozgan University of Medical Sciences, Bandarabbas, Iran
3 Dental Research Center, Department of Operative Dentistry, Dental Research Center of Mashhad University of Medical Sciences, Mashhad, Iran
4 Department of Orthodontics, Dental Research Center of Mashhad University of Medical Sciences, Mashhad, Iran
5 Department of School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran

Correspondence Address:
Hooman Shafaee
Department of Orthodontics, Dental Research Center, Mashhad University of Medical Sciences, Mashhad
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2278-0203.173421

Rights and Permissions

Objectives: The objectives were to evaluate the shear bond strength (SBS) of fiber-reinforced composite (FRC) retainers when bonding them to teeth with and without covering the FRC bars using two different adhesive systems. Materials and Methods: Hundred and twenty extracted human maxillary premolars were randomly divided into eight groups (n = 15). FRC bars (4 mm length, Everstick Ortho®, Stick Tech, Oy, Turku, Finland) were bonded to the proximal (distal) surfaces of the teeth using two different adhesives (Tetric Flow [TF, Ivoclar Vivadent, Switzerland] and resin-modified glass ionomer cement [RMGIC, ODP, Vista, CA, USA]) with and without covering with the same adhesive. Specimens were exposed to thermocycling (625 cycles per day [5–55°C, intervals: 30 s] for 8 days). The SBS test was then performed using the universal testing machine (Zwick, GMBH, Ulm, Germany). After debonding, the remaining adhesive on the teeth was recorded by the adhesive remnant index (0–3). Results: The lowest mean SBS (standard deviation) was found in the TF group without covering with adhesive (12.6 [2.11] MPa), and the highest bond strength was in the TF group with covering with adhesive (16.01 [1.09] MPa). Overall, the uncovered RMGIC (15.65 [3.57] MPa) provided a higher SBS compared to the uncovered TF. Covering of FRC with TF led to a significant increase in SBS (P = 0.001), but this was not true for RMGIC (P = 0.807). Thermal cycling did not significantly change the SBS values (P = 0.537). Overall, eight groups were statistically different (ANOVA test, F = 3.32, P = 0.034), but no significant differences in bond failure locations were found between the groups (Fisher's exact tests, P = 0.92). Conclusions: The present findings showed no significant differences between SBS of FRC bars with and without covering by RMGIC. However, when using TF, there was a significant difference in SBS measurements between covering and noncovering groups. Therefore, the use of RMGIC without covering FRC bars can be suggested, which can be validated with in vivo studies.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded277    
    Comments [Add]    
    Cited by others 2    

Recommend this journal