Home Print this page Email this page Small font size Default font size Increase font size   Users Online: 115
Home About us Editorial board Search Browse articles Submit article Instructions Subscribe Contacts Login 

 Table of Contents  
Year : 2016  |  Volume : 5  |  Issue : 4  |  Page : 127-131

Comparative evaluation and influence on shear bond strength of incorporating silver, zinc oxide, and titanium dioxide nanoparticles in orthodontic adhesive

1 Department of Orthodontics, SVS Institute of Dental Sciences, Mahabubnagar, Telangana, India
2 Department of Orthodontics, Darshan Dental College and Hospital, Udaipur, Rajasthan, India
3 Department of Oral Medicine and Radiology, College of Dentistry, Al Jouf University, Sakaka, Aljouf, Saudi Arabia

Date of Web Publication13-Oct-2016

Correspondence Address:
Santosh R Patil
Department of Oral Medicine and Radiology, College of Dentistry, Al Jouf University, Sakaka, Aljouf
Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2278-0203.192115

Rights and Permissions

Objective: To investigate the influence of silver (Ag), zinc oxide (ZnO), and titanium dioxide (TiO 2 ) nanoparticles on shear bond strength (SBS).
Materials and Methods: One hundred and twenty extracted premolars divided into four groups with thirty specimens in each group. Group 1 (control): brackets (American Orthodontics) were bonded with Transbond XT primer. Groups 2, 3, and 4: brackets (American Orthodontics) were bonded with adhesives incorporated with Ag, ZnO, and TiO 2 nanoparticles in the concentration of 1.0% nanoparticles of Ag, 1.0% TiO 2 , and 1.0% ZnO weight/weight, respectively. An "Instron" universal testing machine AGS-10k NG (SHIMADZU) was used to measure the SBS. The data were analyzed by SPSS software and then, the normal distribution of the data was confirmed by Kolmogorov-Smirnov test. One-way ANOVA test and Tukey's multiple post hoc procedures were used to compare between groups. In all statistical tests, the significance level was set at 5% (P < 0.05).
Results: A significant difference was observed between control (mean [standard deviation (SD)] 9.43 [3.03], confidence interval [CI]: 8.30-10.56), Ag (mean [SD]: 7.55 [1.29], CI: 7.07-8.03), ZnO (mean [SD]: 6.50 [1.15], CI: 6.07-6.93), and TiO 2 (mean [SD]: 6.33 [1.51], CI: 5.77-0.89) with SBS (F = 16.8453, P < 0.05) at 5% level of significance.
Conclusion: Incorporation of various nanoparticles into adhesive materials in minimal amounts may decrease SBS and may lead to the failure of bracket or adhesive. The limitation of this study is that it is an in vitro research and these results may not be comparable to what the expected bond strengths observed in vivo. Further clinical studies are needed to evaluate biological effects of adding such amounts of nanoparticles and approve such adhesives as clinically sustainable.

Keywords: Adhesive, nanoparticles, shear bond strength

How to cite this article:
Reddy AK, Kambalyal PB, Patil SR, Vankhre M, Khan MY, Kumar TR. Comparative evaluation and influence on shear bond strength of incorporating silver, zinc oxide, and titanium dioxide nanoparticles in orthodontic adhesive. J Orthodont Sci 2016;5:127-31

How to cite this URL:
Reddy AK, Kambalyal PB, Patil SR, Vankhre M, Khan MY, Kumar TR. Comparative evaluation and influence on shear bond strength of incorporating silver, zinc oxide, and titanium dioxide nanoparticles in orthodontic adhesive. J Orthodont Sci [serial online] 2016 [cited 2021 Oct 27];5:127-31. Available from: https://www.jorthodsci.org/text.asp?2016/5/4/127/192115

  Introduction Top

Despite the fact that use of nanotechnology in orthodontics is thought to be in its early stages, there is a gigantic potential in research related to this field including nanodesigned orthodontic bonding material and conceivable nanovector for quality conveyance for mandibular development incitement. [1]

Patient compliance in maintaining alluring oral hygiene is consistently confronting during orthodontic therapy; therefore, many practitioners prefer modalities that do not depend on patient cooperation. It is noted that both orthodontic appliances and bonding materials may retain plaque. The existence of archwires thwart cleaning by spawning difficulty in avenue to plaque-retaining areas; this is very much acclaimed while using multiple loops, auxiliary archwires, and diversity of elastics. [2] As a repercussion of this, demineralization supervened by white spot lesion and new sites liable to caries will form adjacent to the bands and brackets amid orthodontic treatment with fixed appliance. [3] Forestalling of white spot lesions eventuates by executing a good oral hygiene methods such as use of fluoridated dentifrice for brushing teeth. [4] Numerous methods have been used to curtail enamel demineralization in patients using fixed orthodontic appliances. These approaches include using bonding agents with antibacterial properties, mouth rinses incorporated with antimicrobial agents, and coatings on brackets/wires or remineralizing agents adjacent to orthodontic appliances, but their response was observed to be limited. [5],[6] Nanotechnology has been applied in dentistry to cater materials with augmented mechanical properties and antibacterial effects. [7] With the evolution of nanotechnology and the contrasting demeanor disclose by nanoparticles, asserts have been contrived to take leverage of this approach in orthodontic bonding. An embodiment of nanoparticles into other orthodontic material has revealed promising accouterments in terms of antimicrobial and mechanical properties. [8] Nanoparticles are incorporated into orthodontic adhesives/cements or acrylic resins and can coated onto the surfaces of orthodontic appliances to prevent microbial adhesion or enamel demineralization in orthodontic therapy. [9] Incorporating nanoparticles within the bonding agent and not into the adhesive body itself has weighed a more convincing accession and in some way profitable from a clinical outlook. Considering that the bonding agent which comes into candid touch with the enamel surface, the destination area for precautionary pursuits. Studies in the literature established that nanofillers can minimize enamel demineralization with no arbitration of physical properties of the composite. [10] Researchers confirmed that experimental composites composed of silver nanoparticles (nAg) catered an admirable antibacterial properties without negotiating the shear bond strength (SBS). [11] However, inclusion of nAg may sequel to discoloration of the composite matrix, and there is a bit consideration in regard to their biocompatibility. [12] Copper- and zinc-based nanoparticles are reported to induce relentless noxious effects in animal studies in vitro. [13] In the recent past, there has been considerable scrutiny over regarding the photocatalytic action of titanium dioxide (TiO 2 ) nanoparticles in medical and dental literature. [14] Studies in the literature have reported that resins embodying TiO 2 nanoparticles display compelling antimicrobial properties which may be applied for preventing recurrent caries and demineralization of the enamel. [15] Incorporation of TiO 2 nanoparticles to dental composites also augmented mechanical properties, such as modulus of elasticity, microhardness, flexural strength, and also provided bond strength values that similar or even higher levels than that of the controls not containing the nanoparticles. [16] It has been mentioned in literature that various bonding manners need to confirm the prerequisites of the normal SBS ranging from 5.9 to 7.8 MPa. [17]

Previously, the SBS of a nanohybrid restorative material, Grandio (Voco, Germany), and traditional adhesive material (Transbond XT; 3M Unitek, Monrovia, CA, USA) were analyzed when bonding orthodontic brackets and it was observed that nanofilled composite materials can possibly be utilized to bond orthodontic brackets to teeth if its consistency can be made more flowable to promptly hold adhere to the section base. [18]

As needs be, development of clinically adequate orthodontic adhesives with extra antimicrobial components could be attempted just if their mechanical properties have additionally been considered.

In a quickly developing universe of nanotechnology, the trust would be to get these innovations into clinical application at some point or another. Taking everything into account, the future in orthodontic treatment ought to advantage significantly through nanotechnology to all the present endeavors succeed to its clinical application at a sensible expense to the orthodontist and patients.

To the best of our knowledge, research in orthodontics on the proposed topic is limited to the fact that various nanoparticles have antibacterial activity. This study is an attempt to investigate and compare the influence of various nanoparticles on SBS.

  Materials and Methods Top

This was carried out at SVS Institute of Dental Sciences, India, after obtaining approval from the Ethical Clearance Committee. The material and equipment used in the study are listed in [Table 1].
Table 1: Material and equipment used in the study

Click here to view

Sample for Test

  • 120 noncarious, nonfluorosed extracted teeth
  • Preparation of the teeth: All the extracted teeth were stored in artificial saliva before testing. The teeth were mounted vertically on acrylic (methyl methacrylate self-cure resin) blocks that were color coded for identification, with only the crown portion exposed for the study. The whole sample was divided into four groups (GC of 30, GnAg of 30, GnZnO of 30, and GnTiO 2 of 30)
  • Adhesive preparation: Vortex and IKA ® T25 digital ULTRA-TURRAX ® machine was used to blend three different nanoparticles (1.0% nAg), 1.0% nanoparticles of TiO 2 , 1.0% zinc oxide [ZnO], weight/weight) into the adhesive at 3400 rpm for 2 min in a dark room (Rotor stator mechanism). After the preparation, the adhesive was observed under scanning electron microscope to check the homogenicity of the mix.


One hundred and twenty noncarious, nonfluorosed human premolar teeth extracted for orthodontic purpose were collected from the Department of Oral and Maxillofacial Surgery, SVS Institute of Dental Sciences. Teeth with intact buccal surfaces and without any restoration, attrition, abrasion, erosion, or fracture, which have not been pretreated with any chemical agents, were included in the study.

All sample of teeth were cleaned with pumice and water for 5 s, rinsed for 10 s, air dried to avoid desiccation, and etched with 37% phosphoric acid for 30 s and rinsed with water for 10 s. The tooth surfaces were air dried till white, chalky surface appeared.

  • Samples in GC (control group of 30) were applied with smear of adhesive and light cured for 15 s
  • Samples in GnAg (nAg group of 30) were applied with smear of adhesive and light cured for 15 s
  • Samples in GnZnO (ZnO nanoparticles group of 30) were applied with smear of adhesive and light cured for 15 s
  • Samples in GnTiO 2 (TiO 2 nanoparticles group of 30) were applied with smear of adhesive and light cured for 15 s
  • Then, brackets were bonded on all the samples in all the groups and light cured for 40 s
  • The average surface area of the bonded bracket was 9.806 mm.

Evaluation of Shear Bond Strength

An "Instron" universal testing machine AGS-10k NG (SHIMADZU) was used to measure the SBS. The crosshead of Instron moved at the uniform speed of 1 mm/min. The acrylic block was positioned in the lower crosshead with the crown portion of teeth facing upward. The debonding force was applied in a direction parallel to the bracket base. A loop made of 0.8 mm stainless steel was attached to the upper crosshead to apply shear force to debond the bracket. The loop portion was attached below the gingival tie wing of the bracket. The data were analyzed by SPSS software (Statistical Package for Social Sciences, version 20.0, Chicago, Illinois, USA), and then the normal distribution of the data was confirmed by Kolmogorov-Smirnov test. One-way ANOVA test and Tukey's multiple post hoc procedures were used to compare between groups. In all statistical tests, the significance level was set at 5% (P < 0.05).

  Results Top

Scanning electron microscopy examination confirmed homogenous distribution of nanoparticles in the adhesive in all three groups. The mean, standard deviation, and 95% confidence interval for mean of SBS in four groups is represented in [Table 2]. From the results of [Table 3], it can be seen that a significant difference was observed between four groups (control, Ag, ZnO, and TiO 2 ) with SBS (F = 16.8453, P < 0.05) at 5% level of significance. It means that the mean SBS was different in different groups. Further, to know the pairwise significant difference between two groups, the Tukey's multiple post hoc procedures were applied and the results are presented in [Table 3]. From the observation of [Table 4], it can be derived that:

  • A significant difference was observed between control and Ag groups (P = 0.0013), control and ZnO groups (P = 0.0001), control and TiO 2 (P = 0.0001) at 5% level of significance, It means that the SBS was significantly higher in control as compared to Ag, ZnO, and TiO 2 groups
  • A nonsignificant difference was observed between Ag and ZnO groups (P = 0.1442), Ag and TiO 2 groups (P = 0.0673), and ZnO and TiO 2 groups (P = 0.9867) at 5% level of significance. It means that the mean SBS was similar in Ag, ZnO, and TiO 2 groups.
Table 2: Mean, standard deviation and 95% confidence interval for mean of shear bond strength in four groups

Click here to view
Table 3: Comparison of four groups (control, silver, zinc oxide, and titanium dioxide) with shear bond strength by one-way analysis of variance

Click here to view
Table 4: Pair wise comparison of four groups (control, silver, zinc oxide, and titanium dioxide) with shear bond strength by Tukey's multiple post hoc procedures

Click here to view

  Discussion Top

Orthodontic adhesives are acknowledged to display remarkable retaining amplitude of cariogenic streptococci in analogous with bracket materials. Incorporation of nAg into composite resins can minimize the clinging of cariogenic streptococci to orthodontic adhesives. Surface roughness performs an important aspect in the adhesion of bacteria. [19] The present study used nAg with concentration 1.0% in adhesive because nAg was shown to possess potent antibacterial properties. nAg was recently incorporated into dental resins. Their small particle size and large surface area could enable them to release more Ag ions at a low filler level, thereby reducing Ag particle concentration necessary for efficacy. The Ag ions in the resin agglomerated to form nanoparticles that became part of the resin. [19]

ZnO demonstrates antimicrobial property and has been applied in diversified disciplines, such as in creams and ointments which are indicated in management of foot ulcers, burns, and other traumatic skin injuries. Materials used in dentistry such as endodontic sealers and some of the cements have been availed for this same acumen. [20]

The concentration of TiO 2 nanoparticles was selected according to the results of a previous study which revealed that incorporation of 1 weight% TiO 2 nanoparticles to Transbond XT adhesive will bring significant antimicrobial properties without compromising the SBS. Previous researches showed that incorporation of 1 weight% TiO 2 nanoparticles into a conventional orthodontic adhesive does not cause any additional adverse effects to the health when compared to those occurring with the use of pure resin. It is also quoted that periodic cautious steps must be undertaken when using nanocomposites and also their conventional counterparts, which include perfect removal of extra composite surrounding the bracket bases, especially in relation to the gingival and proximal contact areas and prevention of skin contact with resinous materials. [21]

TiO 2 nanoparticles are commercially available in varying sizes and crystalline formats, are optimal for embodiment into dental materials. They are comparably economical with superlative mechanical properties and enticing color. The anatase aspect of TiO 2 nanoparticles shows high photocatalytic action, in addition to carnage bacteria, fungi, and viruses. [22]

Studies have implied that the constitutional element of the antibacterial activity might be from the severance of the bacterial cell membrane function. In addition to this, investiture of intercellular reactive oxygen species, in conjunction with hydrogen peroxide, which is known as a strong oxidizing agent inimical to bacterial cells. [23]

Spencer et al. found that as the concentration of ZnO increases, SBS decreases. Mean bond strengths for the 13% and 23.1% ZnO mixtures were observed to be 5.04 MPa and 4.56 MPa, respectively in their study. [20] Jatania and Shivalinga also noted increased SBS with decreased concentration of ZnO. Keeping these facts in mind, we decided to use 1.0% ZnO. [24]

  Conclusion Top

Incorporation of various nanoparticles into adhesive materials in minimal amounts can affect the SBS which may lead to the failure of bracket or adhesive. A significant difference in SBS was observed among three different nanoparticles. Further studies are needed to investigate effect of nanoparticles on other properties with different concentrations.

Financial Support and Sponsorship


Conflicts of Interest

There are no conflicts of interest.

  References Top

Riad M, Harhash AY, Elhiny OA, Salem GA. Evaluation of the shear bond strength of orthodontic adhesive system containing antimicrobial silver nano particles on bonding of metal brackets to enamel. Life Sci J 2015;12:27-34.  Back to cited text no. 1
Artun J, Brobakken BO. Prevalence of carious white spots after orthodontic treatment with multibonded appliances. Eur J Orthod 1986;8:229-34.  Back to cited text no. 2
Gorelick L, Geiger AM, Gwinnett AJ. Incidence of white spot formation after bonding and banding. Am J Orthod 1982;81:93-8.  Back to cited text no. 3
Meeran NA. Iatrogenic possibilities of orthodontic treatment and modalities of prevention. J Orthod Sci 2013;2:73-86.  Back to cited text no. 4
Chambers C, Stewart S, Su B, Sandy J, Ireland A. Prevention and treatment of demineralisation during fixed appliance therapy: A review of current methods and future applications. Br Dent J 2013;215:505-11.  Back to cited text no. 5
Beyling F, Schwestka-Polly R, Wiechmann D. Lingual orthodontics for children and adolescents: Improvement of the indirect bonding protocol. Head Face Med 2013;9:27.  Back to cited text no. 6
Ozak ST, Ozkan P. Nanotechnology and dentistry. Eur J Dent 2013;7:145-51.  Back to cited text no. 7
Hernández-Sierra JF, Ruiz F, Pena DC, Martínez-Gutiérrez F, Martínez AE, Guillén Ade J, et al. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine 2008;4:237-40.  Back to cited text no. 8
Borzabadi-Farahani A, Borzabadi E, Lynch E. Nanoparticles in orthodontics, a review of antimicrobial and anti-caries applications. Acta Odontol Scand 2014;72:413-7.  Back to cited text no. 9
Xia Y, Zhang F, Xie H, Gu N. Nanoparticle-reinforced resin-based dental composites. J Dent 2008;36:450-5.  Back to cited text no. 10
Ahn SJ, Lee SJ, Kook JK, Lim BS. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent Mater 2009;25:206-13.  Back to cited text no. 11
Wijnhoven SW, Peijnenburg WJ, Herberts CA, Hagens WI, Oomen AG, Heugens EH, et al. Nano-silver - A review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 2009;3:109-38.  Back to cited text no. 12
Wang B, Feng WY, Wang TC, Jia G, Wang M, Shi JW, et al. Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicol Lett 2006;161:115-23.  Back to cited text no. 13
Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal E, Boczkowski J, et al. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 2009;6:14.  Back to cited text no. 14
Arai T, Ueda T, Sugiyama T, Sakurai K. Inhibiting microbial adhesion to denture base acrylic resin by titanium dioxide coating. J Oral Rehabil 2009;36:902-8.  Back to cited text no. 15
Poosti M, Ramazanzadeh B, Zebarjad M, Javadzadeh P, Naderinasab M, Shakeri MT. Shear bond strength and antibacterial effects of orthodontic composite containing TiO 2 nanoparticles. Eur J Orthod 2013;35:676-9.  Back to cited text no. 16
Reynolds J. A review of direct orthodontic bonding. Br J Orthod 1975;2:171-8.  Back to cited text no. 17
Bishara SE, Ajlouni R, Soliman MM, Oonsombat C, Laffoon JF, Warren J. Evaluation of a new nano-filled restorative material for bonding orthodontic brackets. World J Orthod 2007;8:8-12.  Back to cited text no. 18
Miresmaeili A, Atai M, Mansouri K, Farhadian N. Effect of nanosilver incorporation on antibacterial properties and bracket bond strength of composite resin. Iran J Orthod 2012;7:14-9.  Back to cited text no. 19
Spencer CG, Campbell PM, Buschang PH, Cai J, Honeyman AL. Antimicrobial effects of zinc oxide in an orthodontic bonding agent. Angle Orthod 2009;79:317-22.  Back to cited text no. 20
Heravi F, Ramezani M, Poosti M, Hosseini M, Shajiei A, Ahrari F. In Vitro cytotoxicity assessment of an orthodontic composite containing titanium-dioxide nano-particles. J Dent Res Dent Clin Dent Prospects 2013;7:192-8.  Back to cited text no. 21
Sun J, Forster AM, Johnson PM, Eidelman N, Quinn G, Schumacher G, et al. Improving performance of dental resins by adding titanium dioxide nanoparticles. Dent Mater 2011;27:972-82.  Back to cited text no. 22
Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 2006;6:866-70.  Back to cited text no. 23
Jatania A, Shivalinga BM. An in vitro study to evaluate the effects of addition of zinc oxide to an orthodontic bonding agent. Eur J Dent 2014;8:112-7.  Back to cited text no. 24
  Medknow Journal  


  [Table 1], [Table 2], [Table 3], [Table 4]

This article has been cited by
1 Incorporation of Chitosan Nanoparticles into a Cold-Cure Ortho-Dontic Acrylic Resin: Effects on Mechanical Properties
Mostafa Shahabi,Sorour Movahedi Fazel,Abdolrasoul Rangrazi
Biomimetics. 2021; 6(1): 7
[Pubmed] | [DOI]
2 Effect of the Incorporation of Chitosan and TiO2 Nanoparticles on the Shear Bond Strength of an Orthodontic Adhesive: An In Vitro Study
Fahimeh Farzanegan,Hooman Shafaee,Majid Darroudi,Abdolrasoul Rangrazi
Journal of Advanced Oral Research. 2021; 12(2): 261
[Pubmed] | [DOI]
3 Evaluation of a newly developed calcium fluoride nanoparticles-containing orthodontic primer: An in-vitro study
Rawof R. Al Tuma,Yassir A. Yassir
Journal of the Mechanical Behavior of Biomedical Materials. 2021; 122: 104691
[Pubmed] | [DOI]
4 An overview of recent progress in dental applications of zinc oxide nanoparticles
Hedaiat Moradpoor,Mohsen Safaei,Hamid Reza Mozaffari,Roohollah Sharifi,Mohammad Moslem Imani,Amin Golshah,Negin Bashardoust
RSC Advances. 2021; 11(34): 21189
[Pubmed] | [DOI]
5 Evaluation of the Effect of Incorporation of Nano-fluorohydroxyapatite on Tensile Strength and Modulus of Elasticity of an Essix Plate
Hooman Shafaee,Hamidreza Aboutorabzadeh,Hossein Bagheri,Banafsheh Yaloodbardan,Abdolrasoul Rangrazi
Iranian Journal of Orthodontics. 2021; 15(1)
[Pubmed] | [DOI]
6 Chitosan capping of CuO nanoparticles: Facile chemical preparation, biological analysis, and applications in dentistry
Rabia Javed,Farwa Rais,Muhammad Kaleem,Bushra Jamil,Muhammad Arslan Ahmad,Tianhao Yu,Saba Waqar Qureshi,Qiang Ao
International Journal of Biological Macromolecules. 2020;
[Pubmed] | [DOI]
7 Evaluation of the Shear Bond Strength and Antibacterial Activity of Orthodontic Adhesive Containing Silver Nanoparticle, an In-Vitro Study
Ladan Eslamian,Ali Borzabadi-Farahani,Shahedeh Karimi,Sepideh Saadat,Mohammad Reza Badiee
Nanomaterials. 2020; 10(8): 1466
[Pubmed] | [DOI]
8 Effect of different surface treatments on the shear bond strength of luting cements used with implant-supported prosthesis: An in vitro study
Kubra Degirmenci,Serkan Saridag
The Journal of Advanced Prosthodontics. 2020; 12(2): 75
[Pubmed] | [DOI]
9 Chitosan encapsulated ZnO nanocomposites: Fabrication, characterization, and functionalization of bio-dental approaches
Rabia Javed,Farwa Rais,Humaira Fatima,Ihsan ul Haq,Muhammad Kaleem,Syeda Sohaila Naz,Qiang Ao
Materials Science and Engineering: C. 2020; 116: 111184
[Pubmed] | [DOI]
10 Effect of Adding Nano Silver-Hydroxyapatite to the Orthodontic Primer on Bracket-Enamel Shear Bond Strength
Mahsa Asadi Haqhiqhat Gilani,Nazila Ameli,Raheb Ghorbani,Azam Akhavan,Arman Rabiei,Mehdi Salehi Zeinabadi,Somayeh Kameli
Journal of Evolution of Medical and Dental Sciences. 2020; 9(46): 3457
[Pubmed] | [DOI]
11 Titanium dioxide nanoparticles reinforced experimental resin composite for orthodontic bonding
Mansour K Assery,Nancy Ajwa,Ahoud Alshamrani,Bashayer J Alanazi,Bangalore H Durgesh,Jukka P Matinlinna
Materials Research Express. 2019; 6(12): 125098
[Pubmed] | [DOI]
12 Comparison of the antibacterial effect of nanosilver and chlorhexidine mouthwash on Streptococcus mutans (invitro)
Maryam Rabani,Parisa Aref,Nahid Askarizadeh,Iraj Ashrafitamay
Iranian Journal of Pediatric Dentistry. 2019; 15(1): 93
[Pubmed] | [DOI]
13 Influence of silver nanoparticles on resin-dentin bond strength durability in a self-etch and an etch-and-rinse adhesive system
Zahra Jowkar,Fereshteh Shafiei,Elham Asadmanesh,Fatemeh Koohpeima
Restorative Dentistry & Endodontics. 2019; 44
[Pubmed] | [DOI]
14 Effect of Silver Nanoparticles, Zinc Oxide Nanoparticles and Titanium Dioxide Nanoparticles on Microshear Bond Strength to Enamel and Dentin
Fatemeh Koohpeima,Zahra Jowkar,Nazbanoo Farpour,Mohammad J Mokhtari,Fereshteh Shafiei
The Journal of Contemporary Dental Practice. 2018; 19(11): 1405
[Pubmed] | [DOI]
15 Shear bond strength and adhesive remnant index of orthodontic brackets bonded to enamel using adhesive systems mixed with TiO2 nanoparticles
Mohammad Behnaz,Kazem Dalaie,Hoori Mirmohammadsadeghi,Hamed Salehi,Vahid Rakhshan,Farzin Aslani
Dental Press Journal of Orthodontics. 2018; 23(4): 43.e1
[Pubmed] | [DOI]
16 Biosynthesis of Silver Nanoparticles on Orthodontic Elastomeric Modules: Evaluation of Mechanical and Antibacterial Properties
Alma Hernández-Gómora,Edith Lara-Carrillo,Julio Robles-Navarro,Rogelio Scougall-Vilchis,Susana Hernández-López,Carlo Medina-Solís,Raúl Morales-Luckie
Molecules. 2017; 22(9): 1407
[Pubmed] | [DOI]


Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

  In this article
Materials and Me...
Article Tables

 Article Access Statistics
    PDF Downloaded418    
    Comments [Add]    
    Cited by others 16    

Recommend this journal